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heated liquid is rising very slowly through a semi-infinite 
porous medium towards the permeable horizontal surface, where it mixes with a 
layer of cool overlying fluid. In  the steady state a thermal boundary layer of 
exponential form exists in the medium. It is shown that the layer is stable 
provided that the Rayleigh number for the system does not exceed a critical 
positive value, and that the wave-number of the critical neutral disturbance is 
finite. The stability properties of the layer are explained qualitatively from 
physical considerations. 

1. Introduction 
In  the geothermal region of Wairakei, New Zealand, it is known that the sub- 

surface ground water possesses a general upward convective drift, due to 
buoyancy induced by the high underground temperature. Since the rising ground 
water is cooled as it approaches the surface, where heat is removed by evapo- 
ration, radiation and movement in surface streams, an unstable state may be 
induced, and complicated convective motions appear in the layers near the 
surface. It is the purpose of this paper to investigate the conditions for instability 
to  occur. 

In  an idealized case, one considers a dynamically incompressible fluid, which 
rises at a constant, uniform rate through a semi-infinite homogeneous porous 
medium, and passes through the surface to mix with a layer of fluid at constant 
temperature. When a steady state has been established, a thermal boundary 
layer of exponential form then exists below the surface. 

The basic equations. Suppose that a homogeneous isotropic porous medium 
of porosity e and permeability k is saturated with a liquid incompressible to 
pressure changes, the density p being a function of temperature T only. To allow 
for the dilatation and contraction of the fluid with temperature variations, it is 
convenient to introduce a vector qm proportional to the rate of mass flow, and 
related to the usual volume flow vector q by 

where po is a reference density, corresponding to a temperature To. Then the 
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equations of continuity, motion and heat transport for the liquid in the porous 
medium are 

E@+divq, = 0, 
Po at . .  

1 1 
-grad P - gp/po + Ic vq, = 0, 
Po 

E - aT + q,. grad T = div (Kgrad T). 
at (4) 

I n  equation (3), P i s  the pressure, v = v(p)  = pfp is the kinematic viscosity ( p  = y(p)  
being the dynamic viscosity) and g is the acceleration due to gravity. Inertial 
terms do not appear in this equation, which is usually called Darcy’s law. The 
conditions for the validity of equation (3) are that the Reynolds number based 
upon the flow through the pores should not exceed O( l), and that the time scale of 
unsteady macroscopic motions should be very much greater than klv-the time 
scale of transient motions in a single pore. 

In equation (4), 
( 5 )  

is the heat capacity per unit volume of saturated porous material, c being the 
specific heat of the liquid, and c, and p, the specific heat and the density of the 
solid material. Throughout this paper, the Boussinesq approximation that a 
linear relationship exists between the density p and the temperature T will be 
assumed, so that T can be replaced by p in equation (4). The diffusivity K = K/cpo, 
where K is the thermal conductivity of the saturated porous material, i.e. the 
heat flux crossing unit area in the presence of a unit temperature gradient. When 
mechanical dispersion is also present, K must be replaced by a tensor quantity. 

2. Formulation of the stability problem 
Let the horizontal boundary of the porous medium be at 2 = 0, the axis 02 

being directed vertically upwards, and let the porous medium occupy the region 
- co < 2 < 0. The surface is assumed to be covered by static liquid of constant 
temperature, which gives the boundary conditions p =pl = constant and P = con- 
stant at 2 = 0. It will be assumed also that, at  2 = - co, the medium is saturated 
with a liquid of density po, which is rising vertically at a steady uniform mass 
flow rate p W = po W, (cf. equation (1)). The liquid passes through the permeable 
boundary at 2 = 0 and mixes with the layer of standing fluid. When this primary 
flow is very slow, thermal diffusion from the surface 2 = 0 into the medium 
becomes important, and a thermal boundary layer appears. If the thermal 
diffusivity K taken in the 2-direction can be assumed constant, the steady-state 
primary density distribution is, from equations (2) and (4), 

P = Po + (P1 -Po) eWm z’K (6) 
since W, is a constant. 

Mechanical dispersion is negligible, since it can be shown that the PBclet 
number of the flow through the pores is of the same order of magnitude as the 
ratio of a typical pore diameter to the thickness K/W, of the thermal boundary 
layer. This ratio will be vanishingly small. It follows that the thermal diffusivity 
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can be taken to be isotropic, since the medium is isotropic, so that K is a scalar con- 
stant in equation (4). 

To examine the stability of the given primary flow, one considers the effect 
of superimposing small perturbations p, qh and 0 (say) upon the given primary 
values of pressure, velocity and density, respectively. The perturbed values are 
substituted into equations (2), (3) and (4) and, after linearizing in the usual 
manner, one obtains the perturbation equations 

E ae 
Po at 
- - + div qh = 0, 

Po 
ae ae ap 
at az az E - + w ~ - + - ~ ~  = m e ,  

(7) 

(9) 

where k is the unit vector in the upward (2-) direction, and w, is the 2-component 
of qk. In  these equations, the quantity dvfdp is assumed known from the proper- 
ties of the given liquid, while dp/dZ is given by (6) .  The pressure perturbation p 
and the horizontal components of qh can be eliminated by taking the divergence 
of (8), using (7), to give 

where V: = V2-a2/aZ2. When w, has been eliminated between (10) and (9), 
one obtains the linearized equation obeyed by the small density perturbation 8 

ae 
div [ vgrad I($)-' ( K v e  - wmZ - E ;))I +:& (v;) + ($+ wm$) v;e = 0. 

(11) 

The boundary conditions upon 0 are as follows. At 2 = 0, 0 = 0 and, using 
equations (2) and (3), one finds that the boundary condition p = 0 is equivalent 
to awmfaZ = 0 (Lapwood 1948). In  terms of 0, 

on 2 = 0. When 2 -+ - 00, it  is necessary that 0 and the derivatives of 0 should 
tend to zero more rapidly than exp ( W , ~ / K ) .  

It will be convenient to define the natural length unit of the system by the 
boundary-layer thickness KfWm, taking a new dimensionless variable z = W,Z/K. 
The same scale unit will be used to define dimensionless variables in the hori- 
zontal co-ordinates. Also, let cr = v/vo, where vo is the kinematic viscosity of the 
liquid when p = po. 

From the form of the perturbation equation (ll),  it appears that separable 
solutions for the density disturbance possess the well-known cellular form of Ray- 
leigh instability (Pellew & Southwell 1940). Let 

0 = P(z)  (12) 



186 R. A .  Wooding 

where Ql is a solution of the equation (V: + a%) Q1 = Osuch that thenormalgradient 
of Ql vanishes on a vertical cell boundary. The wave-number a is characteristic 
of the variations of 0 in the horizontal plane, and is dimensionless since the length 
K/W, has been taken as the unit in the horizontal co-ordinates. The operator V! 
is expressed in terms of these non-dimensional variables. 

The eigenvalue equation governing P(x) follows when (12) is substituted into 
(1 1). There results 

{D(cD) - u2v} e-”(D2 - D - a2 - EQ) P + A p  QD(cP) = a2hF, (13) 

where D d/dZ, A p  = ~ ( p ~ - p ~ ) / p ~ ,  Q = K W / W ~ ,  

and 

In  the derivation leading to equation (13), it  has been assumed that the iso- 
tropic thermal diffusivity K is a constant, independent of temperature. Further 
assumptions are necesary in order to simplify the eigenvalue problem represented 
by (13) together with the boundary conditions upon 8. Suppose that the total 
density difference pl-po is small compared with po, so that the ratio A,/E is 
small. In  (13), if the term involving Ap is neglected, the approximation is equiva- 
lent to discarding the first term in the equation of eontinuity (7). Also, replacing 
E by the constant E, = E(po) introduces an approximation of the same order. 
A further consequence of the assumption that (pl -po)/po is small compared with 
unity is that the quantity dv/dp can be taken constant, equal to (dv/dp)o say, 
which is the value when p = po. Then h is a constant, and will be defined as the 
Rayleigh number for the system. 

If u is replaced by ,u/p in the expression for A, there results 

where po is the dynamic viscosity when p = po. 
Evidently, three physical phenomena affect the stability of the system. The 

first is gravitational instability of the well-known Rayleigh type. The second 
effect was noted by Saffman & Taylor (1958) in connexion with the instability 
of an interface between two i&miscible liquids, moving normal to itself through 
a porous medium. These authors showed that, when the forcing liquid has the 
lower viscosity, there is a tendency for instability to appear at the interface. In  
the corresponding case here, the sign of the second term in the last line of (14) is 
positive (tending to produce instability) whenever the viscosity increases in the 
direction of the primary flow. It is found that no analogue exists for the third 
termof (14) in the problem discussed by Saffman & Taylor. In  the present problem 
the fluid is in motion with a constant rate of mass flow proportional to W,. 
However, in the presence of a stationary gradient of density in the flow direction, 
the fluid must dilate or contract as it moves, and the magnitude of the volume 
flow rate W is not a constant. Since the fluid experiences a non-uniform body force 
proportional to -pW = -pWmpo/p which opposes the flow, the stability of the 
system is increased when the density increases in the flow direction. 
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Using the approximate form of equation (13), it is easy to show that small 
disturbances vary with time in an aperiodic manner. Suppose that F and B are 
complex conjugate solutions of (13) which satisfy the given boundary conditions, 
with associated parameters (Q, a, A )  and (a, a, A) ,  respectively. (A method of 
Pellew & Southwell (1940) can be used to show that the wave-number a is always 
real.) Then, from (13), it is found that 

(Q-li)/' e-slF12dz = 0; 

that is, the exponent Q in the time factor is always real. A criterion for neutral 
stability can be specified by putting R = 0 in (13), when the particular disturb- 
ance being considered becomes neutral everywhere. Although this result is 
approximate, it  would appear that, in the exact criterion for neutral stability, 
Q will differ from zero by O(A,) at most, and the error in a calculated eigen- 
function solution will be of the same order. The error in calculating a criterion 
for neutral stability will be O(A;). 

--OD 

For later convenience, the functions 

G = e+ (D2 - D - a,) F and H = {D(uD) -a"} G (15) 
are introduced. In  the neutral case, G is proportional to the z-dependence of 
w,, the perturbation to the vertical component of the disturbance motion, and 
H is proportional to P. Then equations (15) and the approximate form of (13) 
give (D2-D-a2)H = a2Ae5G, ( R  = 0) .  (16) 

3. Solution of the problem 
Series solution. Consider the case of neutral stability, and neglect viscosity 

variations for the present except where these occur in the Rayleigh number (14). 
Then Q = 0 and u = 1 in (13). An appropriate series solution is 

00 

F = C An(& exp clz + B, exp c2z)  ens 
n = O  

= A J ,  + B, F, say, (17) 
in which A ,  and B, are the two constants which are arbitrary. The coefficients 
An+, (n 2 0 )  are given by the recurrence relation 

An+, a2 - 
An {(c, + n)2 - a,} { (c ,  + n) (c, + ?z + 1) - a,}' 

where c1 = 1 +a. For the relation giving Bn+,/Bn (n 2 0),  it  is necessary to re- 
place c1 by c, = 8 + ($ + a,)*. 

When the boundary conditions P = DG = 0 at z = 0 are applied to (17), the 
constants A,  and B, are found to be non-zero only if the characteristic equation 

is satisfied at z = 0, where use is made of the notation of (15). The solution of 
(18) gives a relation connecting A and a. For a given value of a, there exists an 
infinity of distinct eigenvalues satisfying the problem, the lowest value of the 
set having the greatest physical significance. 
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A convenient method of solving (18) consists in forming the differential equa- 
tion obeyed by A(z), solving the equation in series and then equating the appro- 
priate series solution to zero for x = 0 (see for example, Nicholson (1917)). After 
PI and P2 have been eliminated, it is found that A obeys the differential equation 

(D-2)(~-1)(02(0-1)~-a2(2D-1)2}A+2a2heZ(D+1)(20-1)A = 0. (19) 

Only one of the six solutions of (19) is relevant to the present problem, and is of 

2 CnAme(k+m)z. 
the form W 

n=O 

The recurrence relation governing the coefficients can be written 

cn+l= - 2a2(k+ 1 + n )  ( 2 k -  1 + 2n) 
(1 + n )  (k - 1 + n )  ( k  + n )  (2k  + n )  (2k  - 2a + n )  (2a + 1 + n)’  

where k = a + + (t + a2)a (the appropriate solution of the indicia1 equation) is 
determined by comparing the exponent of the leading term in the Cn-series with 
the corresponding exponent in (18). Putting x = 0 in the chosen solution of (19), 
one obtains an expansion of the characteristic equation 

Cn 

= 0, (20) 
where the constant Go is non-zero. If a is given, (20) becomes an equation of 
infinite order in A. Fortunately, the series converges rapidly for the lowest eigen- 
value, and (20) may be solved by iteration. 

a A 
0.42669 6.954001 
0.42723 6.95396, 
0.42850 6.95394, 
0.42971 6-95396, 
0.43032 6.95403, 

TABLE 1. Values of the lowest root A for values of a near the point of maximum 
instability. 

Table 1 gives the values of the lowest root of equation (20) for five different 
values of a, using the first five terms of the series. When a = 0.4285, A passes 
through a minimum value of 6-9539-the critical point for neutral stability. 

The forms of the functions F and cs! for a neutral disturbance, calculated from 
equations (17) and (15), are shown in figure 1 ( 6 )  and (c). A significant feature of 
these functions is that the velocity disturbance penetrates farther into the porous 
medium than does the density disturbance. 

Solution by Cbndrasekhr’s method 
A calculation of the form of the neutral curve for the lowest eigenvalue will now 
be given, using the well-known approximate method of Chandrasekhar (1954). 
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The relevant differential equations are given by (16) and the second equation in 
(15). These reduce to a suitable form after the transformations 

K = e-aBH and g = -cz (c = (4a2+ l)+) 

( D2 - a) K = b2h e-c/2C G 

{D(aB) - b%) G = - e-ClacK, 

have been carried out. Then 

1 
C2 

and 

where D = d/dc in this case and b = a/c.  

-G 

FIUURE 1. Instability of a liquid rising through a semi-infinite porous medium. (a) Primary 
density distribution; (6) dependence upon 2 of the density perturbation at neutral stability; 
(c) dependence upon 2 of the perturbation to the vertical mass flow at  neutral stability. 

In the right-hand side of (22), one can substitute for K the expansion in ortho- 
gonal functions 

where the A ,  are constants and the 

K(e)  = ce-ts 2 A,mc), (23) 
n=O 

are Laguerre polynomials (Morse & Feshbach 1953, p. 784). The set of Laguerre 
polynomials LA({) (n = 0, I ,  2, ... ) is complete, and the expansion (23) satisfies 
the boundary conditions K = 0 at 6 = 0 and K + 0 exponentially as 6 -+ + co. 
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Assuming for the present that u = 1 in (22), one solves the equation for G ,  
subject to the boundary conditions DG = 0 at 5 = 0 and G + 0 exponentidy as 
[-++a. This solution and the expansion (23) for K are substituted into (21). 
Now, if (21) is multiplied through by [e-*c L&(g) (m = 0, 1 ,2 ,  . . . ) and integrated 
with respect to b over the range (0, oo), an infinite set of equations results 

i 2c3 
A ,  Ims--&m,(?&+l)z = 0 (m = 0,1 ,2 ,  ...), 

n= 0 ( ah 

Here P = (c + 1 - 2a)/2c and & = (c + 1 + 2a)/2c, with c defined rn before. In  the 
particular case m = n = 0, it  is found that 

The characteristic equation obtained from (24) by eliminating the constants An 
must be an infinite determinant. However, satisfactory accuracy can be obtained 
in the calculation of the lowest eigenvalue h by equating the leading term to zero. 
The full-line curve of figure 2 has been calculated in this way. The curve is 
qualitatively similar to a neutral curve of Rayleighinstability in a porous medium, 
although the minimum occurs at a lower value of h and a lower value of a than 
would be found for horizontal planes spaced a distance K/W, apart. When 
a = 0.4285, this approximate method gives h = 6-9735-a result less than 0.3 yo 
higher than the 'exact' value (cf. table 1). 

At first, the appearance of a minimum at a finite value of a in the neutral curve 
for this stability problem would seem to be surprising. By contrast, when a 
horizontal layer of saturated porous material separates two static liquids which 
differ in density, it can be shown that the critica1 Rayleigh number decreases to a 
minimum value only when the horizontal wave-number of the disturbance 
tends to zero. A brief heuristic explanation follows. As x + - 00, a density dis- 
turbance of small wave-number a tends to zero approximately as e5, i.e. the dis- 
turbance is confined to a boundary layer of constant thickness (K/W, in dimen- 
sional units) in which vertical diffusion effects are important and are independent 
of a. However, the fluid motion associated with the disturbance tends to zero 
as ems, so that, since a roughly similar flow pattern exists for differing small values 
of a, the path length must vary as l/a. Consequently, the rate of growth of such 
a disturbance will be proportional to a. It follows that the critical Rayleigh 
number must tend to infinity as l/a when a + 0,  and this is what is actually 
found. 
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It is of interest to note that a similar argument, leading to the conclusion that 
the flow-path length varies as l /a,  indicates the reason for the linear dependence 
of w upon a found by Saffman & Taylor (1958). Here w is the rate of growth of a 
disturbance (of wave-number a )  to the interface between two immiscible fluids 
in a porous medium. 

At large values of a, the curve of neutral stability in figure 2 becomes parabolic. 
This occurs because the disturbance is concentrated near the surface of the 
medium in a region where the density gradient is approximately constant, and 

( ro t=  0.5 

1 I 

0.5 a 1 

FIQURE 2. Approximate curves showing the value of the Rayleigh number A for neutral 
stability plotted as a function of the dimensionless wave-number a. The kinematic vis- 
cosity has the functional form 
where u; is assumed constant. 

the horizontal dimensions of a typical convection cell are very small compared 
with the vertical height. Under these conditions, the tendency of the disturbance 
to grow under the action of vertical forces is independent of the wave-number a, 
but damping takes place by transverse diffusion, which is proportional to a*. 
Similar considerations apply to the motion of a long convection cell in a vertical 
tube filled with porous material (Wooding 1959). 

An extension of the present method has been used to estimate the effects 
of variations in kinematic viscosity v which have been neglected in the two 
previous solutions. For example, if v is proportional to p, one has u = 1 + aie”, 
where ui = v;l(dv/dp)o(p,-po). It is then necessary to solve equation (22) 
approximately. When ui = 0.5 (a positive value, for which the viscosity in- 
creases upwards), the curve of neutral stability is modified approximately as 
shown by the broken-line curve in figure 2. There is an increase in stability, 
especially at the higher wave-numbers. An increase in the critical value of the 
Rayleigh number is found, and the corresponding value of the wave-number is 
decreased. These effects arise because the fluid motion due to a disturbance of 
high wave-number is restricted to a layer close to the surface of the medium, 
where v M vo( 1 + u;), whereas the fluid flow due to a disturbance of low wave- 
number penetrates more deeply into the medium, where v % v,,. 

v = vo(l +u;ea), 
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